MERRY CHRISTMAS! Until the 10th of December, buy a mouthpiece and get a free gift

What is a sound? General reminder on sound waves

Sound is everywhere in our life. It wakes us up in the morning, it accompanies us in our journeys via our headphones or our car radio. It is the sound that finally allows us to communicate with our fellow men. But do you really know what a sound is? What physical phenomenon is hidden behind a Mozart opera as well as in the percussive crash of a jackhammer?

Air vibrations

Sound is a vibration of molecules that propagates in a medium (air, water, concrete). The sound does not spread in the void, forget the laser sounds of Star Wars, it's fake! We will focus here on sound in the air: the sound waves are actually slices of air molecules that vibrate around a position of equilibrium. The vibration of a molecule corresponds to a round trip, a continuous back and forth of the molecule (like the pendulum of a clock).

Sound wave acoustic scheme explanation

The maximum distance the molecule travels in its back-and-forth movement is called the amplitude of the sound. This physical measure corresponds to the volume of the sound. Consequence: if you turn the volume knob to put the music louder, the molecules vibrate by moving further away from their equilibrium position.

Did you know ?

The smallest sound amplitude a human ear can perceive is a displacement of the molecules of 0.1 ångström, a displacement smaller than the radius of an atom! This is to say if our ear is precise.

Another important characteristic of sound is the frequency with which the particles vibrate. It is simply the number of round trips per second made by the molecule of air. In terms of perception, the frequency of the sound corresponds to what is called its pitch: if the frequency is low, the sound will be low-pitched, if the frequency is high the sound will be high-pitched.

  • The 440 Hz A corresponds to air molecules that make 440 round trips per second !

  • The lowest sound that the human ear can hear has a frequency of 20 Hz, and the highest sound has a frequency of 20 000 Hz. These values ​​vary for each individual (and in particular according to the age).

Sound example of a signal that increase in frequency

The sound in equation

The simplest sound is the pure sound. A whistle, a tuning fork or a violin playing in the very high register are examples of sounds that are very similar to pure sound. In the case of the pure sound, the slice of the air molecule vibrates regularly over time, like the pendulum of a clock. We can represent its movement in time by a sinusoidal curve:

Sound wave sinusoid scheme

Mathematically we can write:

  • f is the frequency of oscillation. It is a quantity directly related to the period (the duration of a round trip, in blue on the image).

  • A is the sound amplitude.

Syos saxophone mouthpiece more in tune

Complexe sounds

We have seen the example of pure sound but in real life the sounds are much more complicated than that. A held note played on the saxophone, for example, contains several superimposed frequencies, even if a defined pitch is heard. A complex sound is always the superposition of several pure sounds of different frequency and amplitude.

fourrier sound superposition shceme

For this kind of sound, the lowest frequency is called the fundamental frequency. It is this frequency that determines the pitch of the note that is heard. The other frequencies are called the harmonics of the sound: they will not change the pitch of the sound but rather its timbre.


Most of the sounds have no pitch: we can think of the different sounds of the battery, that of a car that goes on the street ... These sounds actually contain all frequencies in, an equivalent way. When no frequency is stronger than the others, it is said that the sound is noisy. On the other hand, if one frequency emerges among the others, one will hear a pitch at the sound.


  • Sound is a physical phenomenon corresponding to the vibration of air molecules

  • It is characterized mainly by its frequency (pitch of the note) and its amplitude (sound volume)

  • Pure sounds like the tuning fork have only one frequency, but most sounds consist of the superposition of an infinity of pure sounds.


Don’t miss anything about Syos news and offers! Join us today

Follow us



Don’t miss anything about Syos news and offers! Join us today